Course description

1 General information

Course name	Strength of materials
Course code	M1-SM
Level of study (B.Sc, M.Sc., Ph.D.)	B.Sc
ECTS	5
Course manager	prof. dr hab. inż. Halina Egner,
	Institute of Applied Mechanics (M-01)
Course length	One (1) semester
Coordinator for international programs	erasmus@mech.pk.edu.pl

2 Prerequisites

• Completed courses in "Mathematics" and "General mechanics"

2 Program

Туре	Lectures	Classes	Labs	Computer labs	Project	Seminar
Hours	15	15	15	-	15	-

3 Contents

Lectures		
No.		Hours
1	Introduction to engineering design: basic assumptions and design procedure; problem	2
	formulation and solution; significant digits; computational tools; system of units. Review of static equilibrium. Internal force resultants.	
2	Internal force diagrams: internal axial forces; internal torque; shear and moment in beams; load, shear, and moment relationships; internal forces in frames and arches.	2
3	Concept of stress: normal stress in axially loaded members; bearing and shearing stresses in connections; allowable stress and factor of safety.	1
4	Strain and material properties: deformation; components of strain; stress-strain diagram; elastic versus plastic behavior; Hooke's law; Poisson's ratio; strain energy.	1
5	Transformation of stress and strain: plane stress; principal stresses; maximum shear stresses; Mohr's circle for plane stress; Mohr's circle for plane strain.	2
6	Design of statically determinate axially loaded members.	1
7	Torsion: deformation of a circular shaft; torsion formula; angle of twist; design of circular shafts.	2
8	Stresses in beams: beam deformation in pure bending; assumptions of beam theory; normal strains in beams; normal stresses in beams; shear stresses in beams; design of prismatic beams; deflection of beams (method of integration).	2
9	Energy methods.	1
10	Statically indeterminate structures.	1

Classes		
No.		Hours
1	Internal forces in bar elements.	4
2	Stresses and deformation of axially loaded members, circular shafts subjected to torsion,	6
	beams, frames.	
3	Energy methods.	2
4	Analysis of internal forces in statically indeterminate structures.	3

Labs		
No.		Hours
1	Static tensile and compression tests of metals. Mechanical properties of metallic materials in	2
	elastic and plastic range. Determination of modulus of elasticity, Poisson's ratio, yield stress,	
	tensile strength.	
2	Properties of materials under dynamic loads. Deformation rate, temperature and notch	2
	influence. Determination of the dynamic load factor for impact bending.	
3	Contact problems and hardness of materials. Contact stresses and hardness measurements of	2
	metals and non-metallic materials using various methods.	
4	Rheological properties of polymeric materials and composites. Creep and relaxation	2
	phenomena. Basic rheological models of solids.	
5	Electrofusion tensometry. Fundamentals of the method. Factors influencing measurement	2
	results.	
6	Fatigue of materials. Fatigue as one of the basic modes of failure. Fatigue hypotheses.	2
	Wöhler's test. Lehr's method.	
7	Static bending and twisting test. Experimental verification of bending theory with the use of	3
	superposition method. Determination of beam deflection. Static test of twisting bars with	
	axisymmetric cross-section. Determination of shear modulus.	

Project		
No.		Hours
1	Internal forces in bar elements	2
2	Design of axially loaded members (bars, trusses) and bars subjected to torsion (transmission	2
	shafts).	
3	Design of beams.	3
4	Design of statically indeterminate structural elements.	3
5	Calculating displacements by the use of energy methods.	2
6	Design of statically indeterminate structural elements.	3

3 Learning Outcomes (skills and knowledge):

Upon successful completion of this course students should be able to:

- calculate and represent the internal force diagrams in bars and simple structures
- understand the fundamental concepts of stress and strain, and the relationship between both to solve simple problems of applied elasticity
- solve problems related to axial loading, torsion, and bending of simple structural elements
- analyze and design structural members subjected to tension, compression, torsion, bending using the fundamental concepts of stress, strain, and elastic behavior of materials.

4 Assessment policy (examination):

- Attendance and assignment (5%)
- Midterm exam (written) (35%)
- Test (written) (10%)
- Final Exam (written) (50%)

5 Literature

- 1. Ansel C. Ugural Mechanics of Materials, USA, 2007, John Wiley & Sons
- 2. R. C. Hibbeler Mechanics of Materials, Singapore, 2005, Pearson
- 3. A. Pytel, J. Kiusalaas Mechanics of Materials, Cengage Learning, 2012
- 4. V. D. da Silva, Mechanics and Strength of Materials, Springer 2010